Binary Search
- Special cases when array is null or length is 0;
- Loop condition (start+1 < end), stops when start is next to end;
- Assign middle: middle = start + (end - start)/2, avoid overflow;
- Compare cases: ==, <, >;
Find Minimum in Rotated Sorted Array II
Analysis: This problem allows duplicates. So special scenario could happen that mid, start and end all have same value.
What we gonna do is to test whether num[start]==num[end], if so, move start pointer right till they have different values.
Worst case would take O(n)
Notice: Need to cover the situation that resultant array is unrotated.
public static int findMinBS(int[] num) {
if (num == null || num.length == 0)
return Integer.MAX_VALUE;
int start = 0;
int end = num.length - 1;
int mid;
while (end - start > 1) {
while (num[start] == num[end] && start != end) {
start++;
}
// When the array is not rotated
if (num[start] <= num[end])
return num[start];
mid = start + (end - start)/2;
if (num[mid] >= num[start]) {
start = mid;
} else {
end = mid;
}
}
return Math.min(num[start], num[end]);
}
Find the Duplicate Number
Analysis: In this problem, we regard the range [1,n] as our search array. Make mid = start + (end - start)/2 and count number of elements not greater than mid. If count > mid, then the duplicate number is smaller than mid; else, the duplicate number is larger than mid.
public int findDuplicate(int[] nums) {
if (nums == null || nums.length == 0)
return -1;
int start = 1;
int end = nums.length - 1;
int mid;
while (start <= end) {
mid = start + (end - start)/2;
int count = 0;
for (int i=0; i < nums.length; i++) {
if (nums[i] <= mid)
count++;
}
if (count > mid) {
end = mid - 1;
} else {
start = mid + 1;
}
}
return start;
}
Divide Two Integers
Analysis: We can use bit operation to make divisor multiply by 2 until it's right less than dividend. Then take the difference and keep left shift. Till the difference is less than divisor.
Notice: The special cases here are really tricky. Need to consider when divisor==0, dividend==0 and dividend==Integer.MIN_VALUE&&divisor==-1. Need to notice when we get absolute value of dividend and divisor we need to use long cause one of them could be Integer.MIN_VALUE.
public int divide(int dividend, int divisor) {
if (divisor == 0) {
return dividend > 0 ? Integer.MAX_VALUE : Integer.MIN_VALUE;
}
if (dividend == 0) {
return 0;
}
if (dividend == Integer.MIN_VALUE && divisor == -1) {
return Integer.MAX_VALUE;
}
boolean sign = ((dividend > 0) && (divisor > 0)) || ((dividend < 0) && (divisor < 0));
int result = 0;
long a = Math.abs((long)dividend);
long b = Math.abs((long)divisor);
while (a >= b) {
int shift = 0;
while (a >= (b << shift)) {
++shift;
}
result += 1 << (shift - 1);
a -= b << (shift - 1);
}
return sign ? result : (-result);
}